3.6.83 \(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [583]

3.6.83.1 Optimal result
3.6.83.2 Mathematica [A] (verified)
3.6.83.3 Rubi [A] (verified)
3.6.83.4 Maple [A] (verified)
3.6.83.5 Fricas [A] (verification not implemented)
3.6.83.6 Sympy [F]
3.6.83.7 Maxima [B] (verification not implemented)
3.6.83.8 Giac [F]
3.6.83.9 Mupad [B] (verification not implemented)

3.6.83.1 Optimal result

Integrand size = 45, antiderivative size = 129 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a (7 A+5 B+15 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A+5 B) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}} \]

output
2/15*a*(7*A+5*B+15*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2) 
+2/5*A*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(3/2)+2/15*(A+5*B)*s 
in(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)
 
3.6.83.2 Mathematica [A] (verified)

Time = 1.45 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.57 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a (19 A+20 B+30 C+2 (4 A+5 B) \cos (c+d x)+3 A \cos (2 (c+d x))) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2 
))/Sec[c + d*x]^(5/2),x]
 
output
(a*(19*A + 20*B + 30*C + 2*(4*A + 5*B)*Cos[c + d*x] + 3*A*Cos[2*(c + d*x)] 
)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a*(1 + Sec[c + d*x])])
 
3.6.83.3 Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.09, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {3042, 4574, 27, 3042, 4501, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4574

\(\displaystyle \frac {2 \int \frac {\sqrt {\sec (c+d x) a+a} (a (A+5 B)+a (2 A+5 C) \sec (c+d x))}{2 \sec ^{\frac {3}{2}}(c+d x)}dx}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\sec (c+d x) a+a} (a (A+5 B)+a (2 A+5 C) \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)}dx}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (A+5 B)+a (2 A+5 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4501

\(\displaystyle \frac {\frac {1}{3} a (7 A+5 B+15 C) \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a (A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} a (7 A+5 B+15 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4291

\(\displaystyle \frac {\frac {2 a^2 (7 A+5 B+15 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a (A+5 B) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}}{5 a}+\frac {2 A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

input
Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec 
[c + d*x]^(5/2),x]
 
output
(2*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + ((2 
*a^2*(7*A + 5*B + 15*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*S 
ec[c + d*x]]) + (2*a*(A + 5*B)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d 
*Sqrt[Sec[c + d*x]]))/(5*a)
 

3.6.83.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4574
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e 
 + f*x])^n/(f*n)), x] - Simp[1/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[ 
e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x] 
, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] 
&&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])
 
3.6.83.4 Maple [A] (verified)

Time = 1.33 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.63

method result size
default \(\frac {2 \left (3 A \cos \left (d x +c \right )^{2}+4 A \cos \left (d x +c \right )+5 B \cos \left (d x +c \right )+8 A +10 B +15 C \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{15 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(81\)
parts \(\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sin \left (d x +c \right )+4 \tan \left (d x +c \right )+8 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )}{15 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}+\frac {2 B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}-\frac {2 C \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{d \sqrt {\sec \left (d x +c \right )}}\) \(161\)

input
int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2 
),x,method=_RETURNVERBOSE)
 
output
2/15/d*(3*A*cos(d*x+c)^2+4*A*cos(d*x+c)+5*B*cos(d*x+c)+8*A+10*B+15*C)*(a*( 
1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)
 
3.6.83.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.73 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \, {\left (3 \, A \cos \left (d x + c\right )^{3} + {\left (4 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (8 \, A + 10 \, B + 15 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c 
)^(5/2),x, algorithm="fricas")
 
output
2/15*(3*A*cos(d*x + c)^3 + (4*A + 5*B)*cos(d*x + c)^2 + (8*A + 10*B + 15*C 
)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*c 
os(d*x + c) + d)*sqrt(cos(d*x + c)))
 
3.6.83.6 Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2)/sec(d*x 
+c)**(5/2),x)
 
output
Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x) + C*sec(c + d*x)** 
2)/sec(c + d*x)**(5/2), x)
 
3.6.83.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 335 vs. \(2 (111) = 222\).

Time = 0.50 (sec) , antiderivative size = 335, normalized size of antiderivative = 2.60 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (30 \, \cos \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \cos \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) - 30 \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {4}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) - 5 \, \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \sin \left (\frac {2}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 6 \, \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \sin \left (\frac {3}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right ) + 30 \, \sin \left (\frac {1}{5} \, \arctan \left (\sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ), \cos \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right )\right )\right )\right )} A \sqrt {a} + 10 \, \sqrt {2} {\left (3 \, \cos \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) - 3 \, \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) \sin \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) + 2 \, \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 \, \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )\right )} B \sqrt {a} + 120 \, \sqrt {2} C \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{60 \, d} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c 
)^(5/2),x, algorithm="maxima")
 
output
1/60*(sqrt(2)*(30*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2* 
c)))*sin(5/2*d*x + 5/2*c) + 5*cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/ 
2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 30*cos(5/2*d*x + 5/2*c)*sin(4/5*ar 
ctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*cos(5/2*d*x + 5/2*c 
)*sin(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 6*sin(5/2 
*d*x + 5/2*c) + 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2* 
c))) + 30*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A* 
sqrt(a) + 10*sqrt(2)*(3*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x 
+ 3/2*c)))*sin(3/2*d*x + 3/2*c) - 3*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2(s 
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sin(3/2*d*x + 3/2*c) + 3*s 
in(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*B*sqrt(a) + 1 
20*sqrt(2)*C*sqrt(a)*sin(1/2*d*x + 1/2*c))/d
 
3.6.83.8 Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c 
)^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.6.83.9 Mupad [B] (verification not implemented)

Time = 17.66 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (35\,A\,\sin \left (c+d\,x\right )+40\,B\,\sin \left (c+d\,x\right )+60\,C\,\sin \left (c+d\,x\right )+8\,A\,\sin \left (2\,c+2\,d\,x\right )+3\,A\,\sin \left (3\,c+3\,d\,x\right )+10\,B\,\sin \left (2\,c+2\,d\,x\right )\right )}{30\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

input
int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/( 
1/cos(c + d*x))^(5/2),x)
 
output
(cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x)) 
^(1/2)*(35*A*sin(c + d*x) + 40*B*sin(c + d*x) + 60*C*sin(c + d*x) + 8*A*si 
n(2*c + 2*d*x) + 3*A*sin(3*c + 3*d*x) + 10*B*sin(2*c + 2*d*x)))/(30*d*(cos 
(c + d*x) + 1))